Ускорение при равноускоренном движении по окружности

Ускорение при равноускоренном движении по окружности

at = dv/dt = R.dw/dt = Re; (3.88).

an = v 2 /R = w 2 R; (3.89).

a 2 = at 2 + an 2 = (dv/dt) 2 + (v 2 /R) 2 = R(e 2 + w 2 ). (3.90).

Пpи вpащении твеpдого тела вокpуг неподвижной оси все точки тела движутся по окpужностям с центpами, pасположенными на оси вpащения. Линейные величины для точек вpащающегося твеpдого тела связаны с угловыми, т.к. во все фоpмулы этих соотношений будет входить pадиус вpащения точки.

Связь между линейными и угловыми величинами выражается следующими формулами: s = Rj. (3.91).

v = Rw, (3.92).

at = Re, (3.93).

an = Rw 2 . (3.94).

При равноускоренном движении по окружности все виды ускорений отличны от нуля, только at = const. (3.95). w = w + et; (3.96).

j = j + wt + (et 2 )/2. (3.97).

Для частного случая криволинейного движения — движения по окружности радиуса R, угловые характеристики движения связаны с линейными характеристиками весьма просто: Dj = Ds/R; (3.98).

w = dj/dt = v/R; (3.99).

e = dw/dt = d 2 j/dt 2 = a/R. (3.100).

Между движением твеpдого тела вокpуг неподвижной оси и движением отдельной матеpиальной точки (поступательным движением) существует аналогия. Кооpдинате соответствует угол, линейной скоpости — угловая скоpость, линейному (касательному) ускоpению — угловое ускоpение. Вектор называется аксиальным вектором, тогда как вектор перемещения ∆r является полярным вектором (к ним также относятся векторы скорости и ускорения). Полярный вектор имеет точку приложения (полюс), а аксиальный вектор имеет только длину и направление (по оси), но не имеет точки приложения.

d:Program FilesPhysiconOpen Physics 2.5 part 2designimagesFwd_h.gifd:Program FilesPhysiconOpen Physics 2.5 part 2designimagesBwd_h.gifd:Program FilesPhysiconOpen Physics 2.5 part 1designimagesFwd_h.gifd:Program FilesPhysiconOpen Physics 2.5 part 1designimagesBwd_h.gifd:Program FilesPhysiconOpen Physics 2.5 part 2designimagesFwd_h.gifd:Program FilesPhysiconOpen Physics 2.5 part 2designimagesBwd_h.gifЛекция № 4.

ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ.

Раздел механики, изучающий законы взаимодействия тел, называется динамикой. Причиной движения тел и изменения его характера с течением времени является взаимодействие тел.Взаимодействия происходят в пространстве и поэтому используют понятие силового поля

Сила, как количественная характеристика является мерой интенсивности взаимодействия тел. В механике сила является вектором: она задается величиной (модулем), направлением действия (вектором) и точкой приложения.

В физике различают четыре типа взаимодействий (сил):

1) гравитационные;

2) электромагнитные;

3) сильные (между элементарными частицами);

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: "Что-то тут концом пахнет". 8867 — | 8386 — или читать все.

Читайте также:  Установка hdd в видеорегистратор

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T — это время, за которое тело совершает один оборот.

Частота вращение — это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение Земли

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Связь со вторым законом Ньютона

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Читайте также:  Восстановление аккумулятора ноутбука samsung

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Как вывести формулу центростремительного ускорения

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна vA и vB соответственно. Ускорение — изменение скорости за единицу времени. Найдем разницу векторов.

Разница векторов есть . Так как , получим

Движение по циклоиде*

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью , которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле

В физике кругово́е движе́ние — это вращение по кругу, т. е. это круговой путь по круговой орбите. Оно может быть равномерным (с постоянной угловой скоростью) или неравномерным (с переменной угловой скоростью). Вращение трёхмерного тела вокруг неподвижной оси включает в себя круговое движение каждой его части. Мы можем говорить о круговом движении объекта только если можем пренебречь его размерами, так что мы имеем движение массивной точки на плоскости. Например, центр масс тела может совершать круговое движение.

Круговое движение является ускоренным, даже если происходит с постоянной угловой скоростью, потому что вектор скорости объекта постоянно меняет направление. Такое изменение направления скорости вызывает ускорение движущегося объекта центростремительной силой, которая толкает движущийся объект по направлению к центру круговой орбиты. Без этого ускорения объект будет двигаться прямолинейно в соответствии с законами Ньютона.

Для движения по кругу радиуса R длина окружности будет C = 2π R. Если период вращения есть T, то

угловая скорость вращения ω будет равна:

Скорость движения объекта равна

Читайте также:  Как настроить wifi роутер тенда

Угол поворота θ за время t равен:

Ускорение, вызванное изменением направления скорости, можно найти, если заметить, что скорость совершает полное изменение направление за то же самое время T, за которое объект делает один оборот. Тогда вектор скорости проходит путь длиной 2π v каждые T секунд, или: и направлено радиально к центру.

Углово́е ускоре́ние — псевдовекторная физическая величина, характеризующая быстроту изменения угловой скорости твёрдого тела.

Существует связь между тангенциальным и угловым ускорениями: aτ = αR, где R — радиус кривизны траектории точки в данный момент времени. Итак, угловое ускорение равно второй производной от угла поворота по времени или первой производной от угловой скорости по времени. Угловое ускорение измеряется в рад/сек2 .

Углова́я ско́рость — векторная величина, характеризующая скорость вращения тела. Вектор угловой скорости по величине равен углу поворота тела в единицу времени: а направлен по оси вращения согласно правилу буравчика, то есть, в ту сторону, в которую ввинчивался бы буравчик с правой резьбой, если бы вращался в ту же сторону.

Единица измерения угловой скорости, принятая в системах СИ и СГС) — радианы в секунду. (Примечание: радиан, как и любые единицы измерения угла, — физически безразмерен, поэтому физическая размерность угловой скорости — просто [1/секунда]). В технике также используются обороты в секунду, намного реже — градусы в секунду, грады в секунду. Пожалуй, чаще всего в технике используют обороты в минуту — это идёт с тех времён, когда частоту вращения тихоходных паровых машин определяли, просто «вручную» подсчитывая число оборотов за единицу времени.

При равномерном движении точки по окружности её траекторией является дуга. Точка движется с постоянной угловой скоростью , а зависимость угла поворота точки от времени является линейной: φ = φ0 + ωt, где — ф0 начальное значение угла поворота. Эта же формула определяет угол поворота абсолютно твёрдого тела при его равномерном вращении вокруг неподвижной оси, то есть при вращении с постоянной угловой скоростью . Важной характеристикой данного типа движения является линейная скорость материальной точки Нужно помнить, что равномерное движение по окружности — движение равноускоренное. Хотя модуль линейной скорости и не меняется, но меняется направление вектора линейной скорости (из-за нормального ускорения) .

Ссылка на основную публикацию
Удаление последнего элемента списка
Введение. Основные операции О дносвязный список – структура данных, в которой каждый элемент (узел) хранит информацию, а также ссылку на...
Телефон самсунг с хорошей камерой недорогой
Если вы ищете лучший телефон Samsung, тогда рейтинг поможет разобраться в их различиях. Посмотрите какой смартфон лучшие купить из всех...
Телефон перестал заряжаться быстрой зарядкой
Наверняка многие сталкивались с тем, что смартфон ни с того ни с сего перестаёт заряжаться. Другая распространённая беда — слишком...
Удаление дубликатов фотографий на русском бесплатно
Здравствуйте Уважаемый Друг. У каждого из нас на компьютере хранится большое количество различных фотографий изображений и тому подобных картинок. Парой...
Adblock detector