Размах вариации в excel

Размах вариации в excel

Microsoft Excel позволяет максимально упростить пользователю ряд задач. С помощью данной утилиты можно в одно мгновение производить сложнейшие расчеты, применяя исходные данные. Сегодня мы поговорим о том, как использовать коэффициент вариации в Excel.

Коэффициент вариации показывает отношение стандартного отклонения к среднему арифметическому, а результат отображается в процентах.

Шаг 1. Расчет стандартного отклонения

Данный инструмент также называют среднеквадратичным отклонением, которое представляет собой квадратный корень из дисперсии. Чтобы рассчитать стандартное отклонение, применяется функция СТАНДОТКЛОН. В последних версиях Excel она разделена на две части, в зависимости от того, как происходит вычисление: СТАНДОТКЛОН.Г(по генеральной совокупности), СТАНДОТКЛОН.В(по выборке). Записываются функции следующим образом:

= СТАНДОТКЛОН(Число1;Число2;…) — Для старой версии

= СТАНДОТКЛОН.В(Число1;Число2;…) — Для новой версии соответственно.

1. Чтобы начать расчет стандартного отклонения, выделите подходящую ячейку и нажмите кнопку "Вставить функцию", расположенную в верхней панели инструментов.

2. Откроется окно мастера функций. Перейдите в категорию "Статистические", затем выберите строку с названием "СТАНДОТКЛОН"(СТАНДОТКЛОН .В или .Г соответственно). Нажмите "ОК".

3. В открывшемся окне аргументов необходимо указать диапазон ячеек, с которыми будет производиться расчет. Также можно ввести конкретные числа. После указания параметров нажмите кнопку "ОК".

4. В ранее выделенной ячейке отобразится итоговый расчет стандартного отклонения.

Шаг 2. Расчет среднего арифметического

Среднее арифметическое отражает общую сумму значений числового ряда, поделенных на их количество. Для этого используем функцию СРЗНАЧ.

1. Выделите нужную ячейку для отображения конечного результата, затем воспользуйтесь кнопкой "Вставить функцию".

2. Перейдите в категорию "Статистические" и выберите поле с наименованием "СРЗНАЧ", после этого нажмите "ОК".

4. В раннее выбранной ячейке выведется результат вычислений среднего арифметического.

Шаг 3. Нахождение коэффициента вариации

Мы получили все предварительные данных для конечных вычислений, поэтому приступаем к последнему шагу, а именно к расчету коэффициента вариации.

1. Выделите ячейку для конечного результата, затем поменяйте формат ячейки на процентный. Сделать это можно во вкладке "Главная", кликнув по полю формата и выбрав соответствующий.

2. Снова вернитесь к ранее выбранной ячейке и выделите ее двойным щелчком левой кнопки мыши. Поставьте в ней знак "=", затем выделите ячейку с результатом вычислений стандартного отклонения. Теперь нажмите кнопку "/"(разделить) на клавиатуре и выберите ячейку со средним арифметическим. После ввода данных нажмите клавишу Enter.

3. Результат будет автоматически выведен на экран.

Также существует способ рассчитать коэффициент вариации без предварительных шагов, который мы рассмотрим ниже:

1. Аналогично выделите ячейку, затем придайте ей процентный формат. Впишите в нее следующую формулу:

"Диапазон значений" указывает с исходными данными. Можете указать его вручную, либо просто выделив нужный диапазон ячеек. Вместо оператора СТАНДОТКЛОН также можно ввести СТАНДОТКЛОН .В или СТАНДОТКЛОН .Г соответственно(для новых версий Excel).

2. После занесения всех параметров нажмите клавишу Enter, чтобы получить конечный результат.

С помощью Excel мы смогли максимально упростить выполнение сложных расчетов. Для этого нам понадобилось лишь грамотное использование встроенных инструментов приложения. Как видите, пока не существует способа рассчитать коэффициент вариации в одно действие, поэтому мы воспользовались обходными путями. Надеемся, вам помогла наша статья.

Вариация — это различие значений величин X у отдельных единиц статистической совокупности. Для изучения силы вариации рассчитывают следующие показатели вариации: размах вариации , среднее линейное отклонение , линейный коэффициент вариации , дисперсия , среднее квадратическое отклонение , квадратический коэффициент вариации .

Размах вариации

Размах вариации – это разность между максимальным и минимальным значениями X из имеющихся в изучаемой статистической совокупности:

Недостатком показателя H является то, что он показывает только максимальное различие значений X и не может измерять силу вариации во всей совокупности.

Cреднее линейное отклонение

Cреднее линейное отклонение — это средний модуль отклонений значений X от среднего арифметического значения. Его можно рассчитывать по формуле средней арифметической простой — получим среднее линейное отклонение простое:

Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5.Ранее уже была рассчитана средняя арифметическая= 4. Рассчитаем среднее линейное отклонение простое: Л = (|3-4|+|4-4|+|4-4|+|5-4|)/4 = 0,5.

Читайте также:  Как отредактировать старые записи вконтакте

Если исходные данные X сгруппированы (имеются частоты f), то расчет среднего линейного отклонения выполняется по формуле средней арифметической взвешенной — получим среднее линейное отклонение взвешенное:

Вернемся к примеру про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Ранее уже была рассчитана средняя арифметическая = 4 и среднее линейное отклонение простое = 0,5. Рассчитаем среднее линейное отклонение взвешенное: Л = (|3-4|*1+|4-4|*2+|5-4|*1)/4 = 0,5.

Функция СРОТКЛ

Эта функция вычисляет среднее абсолютных значений отклонений точек данных от среднего, т.е. является мерой разброса множества данных.

Общий вид функции

СРОТКЛ (число1; число2; . )

Число1, число2, . — это от 1 до 30 аргументов, для которых определяется среднее абсолютных отклонений. Можно использовать массив или ссылку на массив вместо аргументов, разделяемых точкой с запятой. При использовании функции надо учитывать следующие условия:

· аргументы должны быть числами или именами, массивами или ссылками, содержащими числа;

· если аргумент содержит тексты, логические значения или пустые ячейки, то такие значения игнорируются; однако, ячейки, которые содержат нулевые значения, учитываются.

Уравнение для среднего отклонения следующее:

На результат СРОТКЛ влияют единицы измерения входных данных.

Линейный коэффициент вариации

Линейный коэффициент вариации — это отношение среднего линейного отклонения к средней арифметической:

С помощью линейного коэффициента вариации можно сравнивать вариацию разных совокупностей, потому что в отличие от среднего линейного отклонения его значение не зависит от единиц измерения X.

В рассматриваемом примере про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5, линейный коэффициент вариации составит 0,5/4 = 0,125 или 12,5%.

Дисперсия

Дисперсия — это средний квадрат отклонений значений X от среднего арифметического значения. Дисперсию можно рассчитывать по формуле средней арифметической простой — получим дисперсию простую:

В уже знакомом нам примере про студента, который сдал 4 экзамена и получил оценки: 3, 4, 4 и 5, ранее уже была рассчитана средняя арифметическая = 4. Тогда дисперсия простая Д = ((3-4) 2 +(4-4) 2 +(4-4) 2 +(5-4) 2 )/4 = 0,5.

Если исходные данные X сгруппированы (имеются частоты f), то расчет дисперсии выполняется по формуле средней арифметической взвешенной — получим дисперсию взвешенную:

В рассматриваемом примере про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5, рассчитаем дисперсию взвешенную:
Д = ((3-4) 2 *1+(4-4) 2 *2+(5-4) 2 *1)/4 = 0,5.

Если преобразовать формулу дисперсии (раскрыть скобки в числителе, почленно разделить на знаменатель и привести подобные), то можно получить еще одну формулу для ее расчета как разность средней квадратов и квадрата средней:

В уже знакомом нам примере про студента, который сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5, рассчитаем дисперсию методом разности средней квадратов и квадрата средней:
Д = (3 2 *1+4 2 *2+5 2 *1)/4-4 2 = 16,5-16 = 0,5.

Если значения X — это доли совокупности, то для расчета дисперсии используют частную формулу дисперсии доли :

.

Функция ДИСПР

Функция вычисляет дисперсию для генеральной совокупности. (Для дисперсии по выборке используется функция ДИСП). Дисперсией ( s 2 ) называют среднюю арифметическую квадратов отклонений результатов наблюдений от их средней арифметической.

Число1, число2, . — это от 1 до 30 числовых аргументов, соответствующих генеральной совокупности. Логические значения, например ИСТИНА и ЛОЖЬ, а также текст игнорируются

ДИСПР предполагает, что аргументы представляют всю генеральную совокупность. Если данные представляют только выборку из генеральной совокупности, то дисперсию следует вычислять, используя функцию ДИСП.

Читайте также:  Феникс восстановление файлов ключ

Уравнение для дисперсии имеет следующий вид:

Для функции ДИСП используется формула

Функция ДИСПРА

Функция аналогично ДИСПРА вычисляет дисперсию для генеральной совокупности. В расчете помимо численных значений учитываются также текстовые и логические значения, такие как ИСТИНА или ЛОЖЬ.

Значение1,значение2. — это от 1 до 30 числовых аргументов, соответствую щих генеральной совокупности.

ДИСПРА предполагает, что аргументы представляют всю генеральную совокупность. Если данные представляют только выборку из генеральной совокупности, то дисперсию следует вычислять, используя функцию ДИСПА. Аргументы, содержащие значение ИСТИНА интерпретируются как 1, аргументы, содержащие текст или значение ЛОЖЬ интерпретируются как 0 (ноль).

Cреднее квадратическое отклонение

Выше уже было рассказано о формуле средней квадратической, которая применяется для оценки вариации путем расчета среднего квадратического отклонения, обозначаемое малой греческой буквой сигма:

Еще проще можно найти среднее квадратическое отклонение, если предварительно рассчитана дисперсия, как корень квадратный из нее:

В примере про студента, в котором выше рассчитали дисперсию , найдем среднее квадратическое отклонение как корень квадратный из нее:

Функция КВАДРОТКЛ

При определении вариации часто используется функция, которая возвращает сумму квадратов отклонений точек данных от их среднего.

Общий вид функции

Число1, число2, . — это от 1 до 30 аргументов, для которых вычисляется сумма квадратов отклонений. Можно использовать массив или ссылку на массив вместо аргументов, разделяемых точкой с запятой.

Аргументы должны быть числами или именами, массивами или ссылками, содержащими числа. Если аргумент содержит тексты, логические значения или пустые ячейки, то такие значения игнорируются; однако, ячейки, которые содержат нулевые значения, учитываются.

Уравнение для суммы квадратов отклонений имеет следующий вид:

Функция СТАНДОТКЛОНП

Вместо дисперсии в качестве меры рассеяния наблюдений вокруг средней арифметической часто используется среднее квадратическое или стандартное отклонение, равное арифметическому значению корня квадратного из дисперсии и имеющее ту же размерность, что и значение признака. Стандартное отклонение — это мера того, насколько широко разбросаны точки данных относительно их среднего.

Число1, число2, . — это от 1 до 30 числовых аргументов, соответствующих генеральной совокупности. Можно использовать массив или ссылку на массив вместо аргументов, разделяемых точкой с запятой. Логические значения, такие как ИСТИНА или ЛОЖЬ, а также текст игнорируются.

СТАНДОТКЛОНП предполагает, что аргументы образуют всю генеральную совокупность. Если данные являются только выборкой из генеральной совокупности, то стандартное отклонение следует вычислять с использованием функции СТАНДОТКЛОН. Для больших выборок СТАНДОТКЛОН и СТАНДОТКЛОНП возвращают примерно равные значения.

СТАНДОТКЛОНП использует следующую формулу:

,

а СТАНДОТКЛОН —

Функция СТАНДОТКЛОНПА

Функция аналогично функции СТАНДОТКЛОНП вычисляет стандартное отклонение по генеральной совокупности. В данном случае аргументами могут являться текст и логические значения.

Значение1,значение2. это от 1 до 30 значений, соответствующих генеральной совокупности. Можно использовать массив или ссылку на массив вместо аргументов, разделяемых точкой с запятой.

СТАНДОТКЛОНПА предполагает, что аргументы образуют всю генеральную совокупность. Если данные являются только выборкой из генеральной совокупности, то стандартное отклонение следует вычислять с использованием функции СТАНДОТКЛОНА. Аргументы, содержащие значение ИСТИНА интерпретируются как 1, аргументы, содержащие значение ЛОЖЬ интерпретируются как 0 (ноль). Для больших выборок СТАНДОТКЛОНА и СТАНДОТКЛОНПА возвращают примерно равные значения.

Квадратический коэффициент вариации

Квадратический коэффициент вариации — это самый популярный относительный показатель вариации:

Критериальным значением квадратического коэффициента вариации V служит 0,333 или 33,3%, то есть если V меньше или равен 0,333 — вариация считает слабой, а если больше 0,333 — сильной. В случае сильной вариации изучаемая статистическая совокупность считается неоднородной, а средняя величина — нетипичной и ее нельзя использовать как обобщающий показатель этой совокупности.

В примере про студента, в котором выше рассчитали среднее квадратическое отклонение, найдем квадратический коэффициент вариации V = 0,707/4 = 0,177, что меньше критериального значения 0,333, значит вариация слабая и равна 17,7%.

Читайте также:  Как обрезать изображение в openoffice

Средние величины, характеризуя ряд наблюдений, не отражают изменчивости наблюдавшихся значений признака, т.е. вариацию. Обычно рассматриваются меры наблюдений вокруг средних величин. Средняя арифметическая является основным видом средних, поэтому ограничимся рассмотрением мер рассеяния наблюдений вокруг средней арифметической.

Сумма отклонений результатов наблюдений от средней арифметической не может характеризовать вариацию наблюдений около средней арифметической, т.к. эта сумма равна нулю. Обычно берут или абсолютные величины или квадраты разностей. В результате получают различные показатели вариации: среднее отклонение, дисперсию или среднеквадратичное отклонение.

Copyright © 2009-2015
Ющик Е.В. All Rights Reserved

Коэффициент вариации в статистике применяется для сравнения разброса двух случайных величин с разными единицами измерения относительно ожидаемого значения. В итоге можно получить сопоставимые результаты. Показатель наглядно иллюстрирует однородность временного ряда.

Коэффициент вариации используется также инвесторами при портфельном анализе в качестве количественного показателя риска, связанного с вложением средств в определенные активы. Особенно эффективен в ситуации, когда у активов разная доходность и различный уровень риска. К примеру, у одного актива высокая ожидаемая доходность, а у другого – низкий уровень риска.

Как рассчитать коэффициент вариации в Excel

Коэффициент вариации представляет собой отношение среднеквадратического отклонения к среднему арифметическому. Для расчета в статистике используется следующая формула:

  • CV – коэффициент вариации;
  • σ – среднеквадратическое отклонение по выборке;
  • ǩ – среднеарифметическое значение разброса значений.

Коэффициент вариации позволяет сравнить риск инвестирования и доходность двух и более портфелей активов. Причем последние могут существенно отличаться. То есть показатель увязывает риск и доходность. Позволяет оценить отношение между среднеквадратическим отклонением и ожидаемой доходностью в относительном выражении. Соответственно, сопоставить полученные результаты.

При принятии инвестиционного решения необходимо учитывать следующий момент: когда ожидаемая доходность актива близка к 0, коэффициент вариации может получиться большим. Причем показатель значительно меняется при незначительном изменении доходности.

В Excel не существует встроенной функции для расчета коэффициента вариации. Но можно найти частное от стандартного отклонения и среднего арифметического значения. Рассмотрим на примере.

Доходность двух ценных бумаг за предыдущие пять лет:

Наглядно это можно продемонстрировать на графике:

Обычно показатель выражается в процентах. Поэтому для ячеек с результатами установлен процентный формат.

Значение коэффициента для компании А – 33%, что свидетельствует об относительной однородности ряда. Формула расчета коэффициента вариации в Excel:

Сравните: для компании В коэффициент вариации составил 50%: ряд не является однородным, данные значительно разбросаны относительно среднего значения.

Интерпретация результатов

Прежде чем включить в инвестиционный портфель дополнительный актив, финансовый аналитик должен обосновать свое решение. Один из способов – расчет коэффициента вариации.

Ожидаемая доходность ценных бумаг составит:

Среднеквадратическое отклонение доходности для активов компании А и В составляет:

Ценные бумаги компании В имеют более высокую ожидаемую доходность. Они превышают ожидаемую доходность компании А в 1,14 раза. Но и инвестировать в активы предприятия В рискованнее. Риск выше в 1,7 раза. Как сопоставить акции с разной ожидаемой доходностью и различным уровнем риска?

Для сопоставления активов двух компаний рассчитан коэффициент вариации доходности. Показатель для предприятия В – 50%, для предприятия А – 33%. Риск инвестирования в ценные бумаги фирмы В выше в 1,54 раза (50% / 33%). Это означает, что акции компании А имеют лучшее соотношение риск / доходность. Следовательно, предпочтительнее вложить средства именно в них.

Таким образом, коэффициент вариации показывает уровень риска, что может оказаться полезным при включении нового актива в портфель. Показатель позволяет сопоставить ожидаемую доходность и риск. То есть величины с разными единицами измерения.

Ссылка на основную публикацию
Произошла ошибка при отрисовке pdf при печати
В формате PDF хранится множество самых разнообразных проектов, например, текстовые презентации, брошюры, открытки, книги. Время от времени каждый обладатель принтера...
Программа fastcam на русском
Create nested quotes for the supply of plate and long product parts accurately costing value added processing. FastCAM® MTO™ (Material...
Программа для сжатия текстур в варфейс
Ребят, хочу поделится одной фичей, про которую мало кто знает. Я приведу пример по игре Hitman 6, но ниженаписанное можно...
Произошла ошибка проверки подлинности затребованный пакет безопасности
Некоторые пользователи, которые подключаются через удаленный доступ RDP в Windows 10/7, получают ошибку "Произошла ошибка проверки подлинности. Указанная функция не...
Adblock detector