Производная силы тока по времени

Производная силы тока по времени

ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ.
СВОБОДНЫЕ И ВЫНУЖДЕННЫЕ ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ.

Электромагнитные колебания — взаимосвязанные колебания электрического и магнитного полей.

Электромагнитные колебания появляются в различных электрических цепях. При этом колеблются величина заряда, напряжение, сила тока, напряженность электрического поля, индукция магнитного поля и другие электродинамические величины.

Свободные электромагнитные колебания возникают в электромагнитной системе после выведения ее из состояния равновесия, например, сообщением конденсатору заряда или изменением тока в участке цепи.

Это затухающие колебания, так как сообщенная системе энергия расходуется на нагревание и другие процессы.

Вынужденные электромагнитные колебания — незатухающие колебания в цепи, вызванные внешней периодически изменяющейся синусоидальной ЭДС.

Электромагнитные колебания описываются теми же законами, что и механические, хотя физическая природа этих колебаний совершенно различна.

Электрические колебания — частный случай электромагнитных, когда рассматривают колебания только электрических величин. В этом случае говорят о переменных токе, напряжении, мощности и т.д.

Колебательный контур — электрическая цепь, состоящая из последовательно соединенных конденсатора емкостью C, катушки индуктивностью L и резистора сопротивлением R.

Состояние устойчивого равновесия колебательного контура характеризуется минимальной энергией электрического поля (конденсатор не заряжен) и магнитного поля (ток через катушку отсутствует).

Величины, выражающие свойства самой системы (параметры системы): L и m, 1/C и k

величины, характеризующие состояние системы:

величины, выражающие скорость изменения состояния системы: u = x'(t) и i = q'(t) .

ХАРАКТЕРИСТИКИ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ

Можно показать, что уравнение свободных колебаний для зарядаq = q(t) конденсатора в контуре имеет вид

где q" — вторая производная заряда по времени. Величина

является циклической частотой. Такими же уравнениями описываются колебания тока, напряжения и других электрических и магнитных величин.

Одним из решений уравнения (1) является гармоническая функция

Период колебаний в контуре дается формулой (Томсона):

Величина φ = ώt + φ, стоящая под знаком синуса или косинуса, является фазой колебания.

Фаза определяет состояние колеблющейся системы в любой момент времени t.

Ток в цепи равен производной заряда по времени, его можно выразить

Чтобы нагляднее выразить сдвиг фаз, перейдем от косинуса к синусу

ПЕРЕМЕННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК

1. Гармоническая ЭДС возникает, например, в рамке, которая вращается с постоянной угловой скоростью в однородном магнитном поле с индукцией В. Магнитный поток Ф , пронизывающий рамку с площадью S ,

где- угол между нормалью к рамке и вектором магнитной индукции .

По закону электромагнитной индукции Фарадея ЭДС индукции равна

где — скорость изменения потока магнитной индукции.

Гармонически изменяющийся магнитный поток вызывает синусоидальную ЭДС индукции

где — амплитудное значение ЭДС индукции.

2. Если к контуру подключить источник внешней гармонической ЭДС

то в нем возникнут вынужденные колебания, происходящие с циклической частотой ώ, совпадающей с частотой источника.

При этом вынужденные колебания совершают заряд q, разность потенциалов u , сила тока i и другие физические величины. Это незатухающие колебания, так как к контуру подводится энергия от источника, которая компенсирует потери. Гармонически изменяющиеся в цепи ток, напряжение и другие величины называют переменными. Они, очевидно, изменяются по величине и направлению. Токи и напряжения, изменяющиеся только по величине, называют пульсирующими.

Читайте также:  Можно ли делить ssd диск на разделы

В промышленных цепях переменного тока России принята частота 50 Гц.

Для подсчета количества теплоты Q, выделяющейся при прохождении переменного тока по проводнику с активным сопротивлением R, нельзя использовать максимальное значение мощности, так как оно достигается только в отдельные моменты времени. Необходимо использовать среднюю за период мощность — отношение суммарной энергии W, поступающей в цепь за период, к величине периода:

Поэтому количество теплоты, выделится за время Т:

Действующее значение I силы переменного тока равно силе такого постоянного тока, который за время, равное периоду T, выделяет такое же количество теплоты, что и переменный ток:

Отсюда действующее значение тока

Аналогично действующее значение напряжения

Трансформатор — устройство, увеличивающее или уменьшающее напряжение в несколько раз практически без потерь энергии.

Трансформатор состоит из стального сердечника, собранного из отдельных пластин, на котором крепятся две катушки с проволочными обмотками. Первичная обмотка подключается к источнику переменного напряжения, а к вторичной присоединяют устройства, потребляющие электроэнергию.

называют коэффициентом трансформации. Для понижающего трансформатора К > 1, для повышающего

Пример. Заряд на пластинах конденсатора колебательного контура изменяется с течением времени в соответствии с уравнением . Найдите период и частоту колебаний в контуре,циклическую частоту, амплитуду колебаний заряда и амплитуду колебаний силы тока. Запишите уравнение , выражающее зависимость силы тока от времени.

Из уравнения следует, что . Период определим по формуле циклической частоты

Зависимость силы тока от времени имеет вид:

Амплитуда силы тока.

Ответ: заряд совершает колебания с периодом 0,02 с и частотой 50 Гц, которой соответствует циклическая частота 100 рад/с, амплитуда колебаний силы тока равна 510 3 А, ток изменяется по закону:

i=-5000 sin100t

«Физика — 11 класс»

Уравнение, описывающее процессы в колебательном контуре

Есть колебательный контур, сопротивлением R которого можно пренебречь.

Уравнение, описывающее свободные электрические колебания в контуре, можно получить с помощью закона сохранения энергии.
Полная электромагнитная энергия W контура в любой момент времени равна сумме его энергий магнитного и электрического полей:

Полная энергия не меняется с течением времени, если сопротивление R контура равно нулю, тогда производная полной энергии по времени равна нулю.
Следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:

Физический смысл вышеприведенного уравнения состоит в том, что скорость изменения энергии магнитного поля по модулю равна скорости изменения энергии электрического поля.
Знак «—» указывает на то, что, когда энергия электрического поля возрастает, энергия магнитного поля убывает (и наоборот).

После вычисления производных в уравнении, получается

Производная заряда по времени представляет собой силу тока в данный момент времени:

Производная силы тока по времени есть не что иное, как вторая производная заряда по времени, подобно тому как производная скорости по времени (ускорение) есть вторая производная координаты по времени.
Тогда основное уравнение, описывающее свободные электрические колебания в контуре:

Читайте также:  Тариф просто для своих мтс новосибирск описание

Полученное уравнение ничем, кроме обозначений, не отличается от уравнения, описывающего колебания пружинного маятника.

Период свободных колебаний в контуре

Формула Томсона
В основном уравнении коэффициент представляет собой квадрат циклической частоты для свободных электрических колебаний:

Период свободных колебаний в контуре, таким образом, равен:

Эта формула называется формулой Томсона в честь английского физика У. Томсона (Кельвина), который ее впервые вывел.

Период свободных колебаний зависит от L и С.
При увеличении индуктивности L ток медленнее нарастает со временем и медленнее падает до нуля.
А чем больше емкость С, тем большее время требуется для перезарядки конденсатора.

Гармонические колебания заряда и тока.

Координата при механических колебаниях изменяется со временем по гармоническому закону:

Заряд конденсатора меняется с течением времени по такому же закону:

где
qm — амплитуда колебаний заряда.

Сила тока также совершает гармонические колебания:

где
Im = qmω — амплитуда колебаний силы тока.
Колебания силы тока опережают по фазе на колебания заряда.

Точно так же колебания скорости тела в случае пружинного или математического маятника опережают на колебания координаты (смещения) этого тела.

В действительности, из-за неизбежного наличия сопротивления электрической цепи, колебания будут затухающими.
Сопротивление R также будет влиять и на период колебаний, чем больше сопротивление, тем бо́льшим будет период колебаний.
При достаточно большом сопротивлении колебания совсем не возникнут.
Конденсатор разрядится, но перезарядки его не произойдет, энергия электрического и магнитного полей перейдет в тепло.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Электромагнитные колебания. Физика, учебник для 11 класса — Класс!ная физика

Производная – одно из фундаментальных понятий математики, это основное понятие дифференциального исчисления, характеризующее скорость изменения функции (в данной точке).

Еще в древности был решен ряд задач дифференциального исчисления. Архимед, например, разработал способ проведения касательной, применимый для кривых. Само понятие производной возникло в XVII веке в связи с необходимостью решения физических, механических, математических задач, в первую очередь, следующих двух: определение скорости прямолинейного неравномерного движения и построение касательной к произвольной плоской кривой. Первой проблемой занимался великий Исаак Ньютон, второй проблемой – не менее великий Го́тфрид Лейбниц. Независимо друг от друга И. Ньютон и Г. Лейбниц разработали аппарат нахождения производной, которым мы и пользуемся в настоящее время. Благодаря дифференциальному исчислению, был решен целый ряд задач теоретической механики, физики и астрономии. Используя методы дифференциального исчисления, ученые предсказали возвращение кометы Галлея, что было большим триумфом науки XVIII в. Основные понятия дифференциального исчисления долгое время не были должным образом обоснованы. Однако в начале XIX в. французский математик О. Коши дал строгое построение дифференциального исчисления на основе понятия предела.

В наши дни производная играет одну из самых главных ролей в науке и технике: с помощью дифференциального исчисления находят решение большинства задач в различных областях научного познания.

Читайте также:  Что означает фиолетовая молния в яндекс такси

В своей работе мы бы хотели подробнее рассмотреть приложение производной в технике: принцип ее работы, значение. В дальнейшем мы рассмотрим применение производной на примере нескольких задач, касающихся и нашей специальности «Электроэнергетика и электротехника». Очень важно знать, что производная показывает скорость изменения функции, или какого-либо процесса, величины как по времени, так и по другим параметрам.

Так как в практических приложениях обычно интересует не только сама функция, но и скорость ее изменения, то производная, будучи характеристикой скорости изменения, функции, имеет самые широкие практические применения в вопросах физики, химии, геометрии и т.д. Так, например: сила тока есть производная , где Δq – положительный электрический заряд, переносимый через сечение проводника за время Δt. Примеры задач, в которых используют производную в различных дисциплинах специальности «Электроэнергетика и электротехника».

Количество электричества, протекающее через проводник, начиная с момента времени t = 0, задается формулой Q = 3t2 – 3t + 4 Определить силу тока в конце 6-й секунды.

Для нахождения силы тока используем известные формулы. Сила тока есть производная количества электричества по времени: следовательно, нужно найти производную функции Q = 3t2 – 3t + 4 и вычислить ее значение при t = 6 c. Имеем I = Q′ = 6t – 3, откуда при t = 6 получим I = 6⋅6 – 3 = 33 (A).

Задача о мгновенной величине тока. Обозначим через q = q(t) количество электричества, протекающее через поперечное сечение проводника за время t.

Пусть Δt – некоторый промежуток времени, Δq = q(t + Δt) – q(t) – количество электричества, протекающее через указанное сечение за промежуток времени от момента t до момента t + Δt. Тогда отношение называют средней силой тока. Мгновенной силой тока в момент времени t называется предел отношения приращения количества электричества Δq ко времени Δt, при условии, что Δt → 0.

При изучении механического смысла производной пользуемся механическим истолкованием производной: скорость движения материальной точки в данный момент времени равна производной пути по времени, т.е.

Ускорение движущегося тела представляет собой скорость изменения его скорости, т.е. Точка движется по окружности радиуса 4 м по закону S = 4,5t3, где S – путь в метрах, t – время в секундах. Найдем модуль ускорения точки в момент времени Т, когда м/с.

По условию v = 6 м/с, значит, 13,5t2 = 6, t2 = 6/13,5,, t2 = 60/135, t2 = 4/9.

при t = T = 2/3 с; at = 27⋅2/3 = 18 м/с2.

Нормальное ускорение

Так как v = 6 м/с, p = r = 4 м то an = 62/4 = 9 м/с2.

Модуль полного ускорения точки:

Умение дифференцировать позволяет исследовать различные функции. Используя задачи общетехнических и специальных дисциплин, мы формируем понимание глубокой общности в применении математического аппарата к широкому кругу разнообразных явлений природы

Мощность в переменном сопротивлении r2 определяется формулой P2 = IU – I2⋅r1, где r1 – const, v – const, . Определить, при каком значении тока I получается наибольшее значение мощности P2.

при

–2r1

Ссылка на основную публикацию
Программа fastcam на русском
Create nested quotes for the supply of plate and long product parts accurately costing value added processing. FastCAM® MTO™ (Material...
При включении принтера каретка не двигается
Возможные причины: - слетела или загрязнена информационная (энкодерная) лента - поврежден фотоэлемент на каретке с обратной сторон. Варианты решения: -...
Прикольные клички для друзей
Люди дают друг другу прозвища с незапамятных времен. Одни клички прикольные или крутые, другие обидные. Много случаев, когда кличку помнят...
Программа для сжатия текстур в варфейс
Ребят, хочу поделится одной фичей, про которую мало кто знает. Я приведу пример по игре Hitman 6, но ниженаписанное можно...
Adblock detector