Численные методы решения дифференциальных уравнений второго порядка

Численные методы решения дифференциальных уравнений второго порядка

Численное решение линейного однородного дифференциального уравнения 2 порядка методами Эйлера и Рунге-Кутта.

Рассматривается линейное однородное дифференциальное уравнение второго порядка вида

Для того, чтобы применить к нему численные методы Эйлера и Рунге-Кутта, следует свести это уравнение к системе 2-х дифференциальных уравнений 1-го порядка

Упростим : b=b/a, c=c/a.

Вводя новую функцию x(t), получаем :

К полученной системе применяем формулу Эйлера :

Затем применяется метод Рунге-Кутта. Расчет ведется по формулам :

В случае нашей системы формулы выглядят следующим образом :

Ниже приведен пример решения уравнения 3 y”+2y’+y=0 на отрезке t=[0..1] с шагом 0,01 в среде Maple ( текст программы)

Задаются коэффициенты дифференциального уравнения

Задание начальных условий

Задание правой границы отрезка

Уменьшение шага повысит точность вычислений

Расчет числа шагов

Вывод дифференциального уравнения

ur := a * diff ( y ( t ), t $2)+ b * diff ( y ( t ), t )+ c * y ( t )=0;

Вывод начальных условий

usl := y ( t 0)= y 0; usl 2:= D ( y )( t 0)= yy 0;

Перерасчет коэффициентов к виду y "+ by ‘+ cy =0

b := b / a : c := c / a :

Применяется метод Эйлера

print (`Метод Эйлера с шагом h `= h );

for i from 1 to n do

В цикле ведется расчет по формулам Эйлера

Если в следующей строке изменить ":" на ";" будут выводится результаты расчета на каждом шаге

Применяется метод Рунге-Кутта 3 порядка

print (`Метод Рунге-Кутта 3 порядка с шагом h `= h );

В этом разделе приведены примеры решенных задач по теме численного решения обыкновенных дифференциальных уравнений (ОДУ) и систем. Разобраны наиболее известные методы Эйлера, Рунге-Кутта (разных порядков), приведено сравнение приближенных и точных решений, построены графики.

Решения задач на численное интегрирование дифференциальных уравнений онлайн

Задача 1.Численно решить задачу Коши для обыкновенного дифференциального уравнения 1-го порядка
на отрезке $[t_0, T]$ с шагом $h=0.2$ а) методом Эйлера; б) методом Рунге-Кутты 2-го порядка с оценкой погрешности по правилу Рунге.
Найти точное решение задачи. Построить на одном чертеже графики точного и приближенных решений.

Читайте также:  Gnd что это такое на распиновке

Задача 2. Используя 1) метод Эйлера и 2) модифицированный метод Эйлера, найдите приближенное решение задачи Коши для обыкновенного дифференциального уравнения первого порядка $y’=f(x,y)$ удовлетворяющего начальным условиям $y(x_0)=y_0$ на отрезке $[a,b]$ с шагом $h=0.1$. Все вычисления вести с четырьмя десятичными знаками.

Задача 3. Численно решить задачу Коши для ОДУ 2-ого порядка методом Рунге-Кутта 4-го порядка. $$u»+e^x u’-(10+sin x )u+f=0, 0lt x lt 1$$ $$u(0)=0; u'(0)=50$$ $$f=50((11+sin x) sin x-e^x cos x). $$ Точное решение: $u=50 sin x, h=0.05, n=20$

Задача 4. Методом конечных разностей найти решение краевой задачи с шагами $h_1=(b-a)/5$, $h_2=(b-a)/10$ и оценить погрешность по правилу Рунге. Построить графики полученных приближенных решений.

Численное решение дифференциальных уравнений

Многие задачи науки и техники сводятся к решению обыкновенных дифференциальных уравнений (ОДУ). ОДУ называются такие уравнения, которые содержат одну или несколько производных от искомой функции. В общем виде ОДУ можно записать следующим образом:

, где x – независимая переменная, — i-ая производная от искомой функции. n — порядок уравнения. Общее решение ОДУ n–го порядка содержит n произвольных постоянных , т.е. общее решение имеет вид .

Для выделения единственного решения необходимо задать n дополнительных условий. В зависимости от способа задания дополнительных условий существуют два различных типа задач: задача Коши и краевая задача. Если дополнительные условия задаются в одной точке, то такая задача называется задачей Коши. Дополнительные условия в задаче Коши называются начальными условиями. Если же дополнительные условия задаются в более чем одной точке, т.е. при различных значениях независимой переменной, то такая задача называется краевой. Сами дополнительные условия называются краевыми или граничными.

Ясно, что при n=1 можно говорить только о задачи Коши.

Примеры постановки задачи Коши:

Читайте также:  Зачем роутеру две антенны

Примеры краевых задач:

Решить такие задачи аналитически удается лишь для некоторых специальных типов уравнений.

Численные методы решения задачи Коши для ОДУ первого порядка

Постановка задачи. Найти решение ОДУ первого порядка

на отрезке при условии

При нахождении приближенного решения будем считать, что вычисления проводятся с расчетным шагом , расчетными узлами служат точки промежутка [x, xn].

Целью является построение таблицы

т.е. ищутся приближенные значения y в узлах сетки.

Интегрируя уравнение на отрезке , получим

Вполне естественным (но не единственным) путем получения численного решения является замена в нем интеграла какой–либо квадратурной формулой численного интегрирования. Если воспользоваться простейшей формулой левых прямоугольников первого порядка

,

то получим явную формулу Эйлера:

, .

Зная , находим , затем т.д.

Геометрическая интерпретация метода Эйлера:

Пользуясь тем, что в точке x известно решение y(x) = y и значение его производной , можно записать уравнение касательной к графику искомой функции в точке :. При достаточно малом шаге h ордината этой касательной, полученная подстановкой в правую часть значения , должна мало отличаться от ординаты y(x1) решенияy(x) задачи Коши. Следовательно, точка пересечения касательной с прямой x = x1 может быть приближенно принята за новую начальную точку. Через эту точку снова проведем прямую , которая приближенно отражает поведение касательной к в точке . Подставляя сюда (т.е. пересечение с прямой x = x2), получим приближенное значение y(x) в точке x2: и т.д. В итоге для i–й точки получим формулу Эйлера.

Явный метод Эйлера имеет первый порядок точности или аппроксимации.

Если использовать формулу правых прямоугольников: , то придем к методу

, .

Этот метод называют неявным методом Эйлера, поскольку для вычисления неизвестного значения по известному значению требуется решать уравнение, в общем случае нелинейное.

Неявный метод Эйлера имеет первый порядок точности или аппроксимации.

Модифицированный метод Эйлера: в данном методе вычисление состоит из двух этапов:

Читайте также:  Gigabyte radeon rx 570 отзывы

Данная схема называется еще методом предиктор – корректор (предсказывающее – исправляющее). На первом этапе приближенное значение предсказывается с невысокой точностью (h), а на втором этапе это предсказание исправляется, так что результирующее значение имеет второй порядок точности.

Методы Рунге – Кутта: идея построения явных методов Рунге–Кутты p–го порядка заключается в получении приближений к значениям y(xi+1) по формуле вида

,

.

Здесь an, bnj, pn, – некоторые фиксированные числа (параметры).

При построения методов Рунге–Кутты параметры функции (an, bnj, pn) подбирают таким образом, чтобы получить нужный порядок аппроксимации.

Схема Рунге – Кутта четвертого порядка точности:

Пример. Решить задачу Коши:

.

Рассмотреть три метода: явный метод Эйлера, модифицированный метод Эйлера, метод Рунге – Кутта.

Точное решение:

Расчетные формулы по явному методу Эйлера для данного примера:

Расчетные формулы модифицированного метода Эйлера:

Ссылка на основную публикацию
Хрипит динамик в машине причины
Атмосфера в салоне автомобиля во многом зависит от работы акустической системы. В бюджетных машинах штатная магнитола и динамики оставляют желать...
Фиксированная шапка сайта при прокрутке
Допустим у вас важная информация например контакты находятся в шапке и вы хотите что бы они всегда были на веду...
Фиксированное меню при скролле
Создаём эффект залипания при прокручивании страницы на блоках меню навигации, бокового виджета и меню с помощью jQuery и без него....
Хром видео не на весь экран
БлогNot. Chrome 33 перестал показывать YouTube в полный экран. Chrome 33 перестал показывать YouTube в полный экран. Видел такой запрос....
Adblock detector