Чему равна кинетическая энергия движущегося тела

Чему равна кинетическая энергия движущегося тела

Определим кинетическую энергию твёрдого тела, вращающегося вокруг неподвижной оси. Разобьем это тело на n материальных точек. Каждая точка движется с линейной скоростью υi=ωri, тогда кинетическая энергия точки

или

Полная кинетическая энергия вращающегося твердого тела равна сумме кинетических энергий всех его материальных точек:

(3.22)

(J — момент инерции тела относительно оси вращения)

Если траектории всех точек лежат в параллельных плоскостях (как у цилиндра, скатывающегося с наклонной плоскости, каждая точка перемещается в своей плоскости рис ), это плоское движение. В соответствии с принципом Эйлера плоское движение всегда можно бесчисленным количеством способов разложить на поступательное и вращательное движение. Если шарик падает или скользит вдоль наклонной плоскости, он двигается только поступательно; когда же шарик катится – он ещё и вращается.

Если тело совершает поступательное и вращательное движения одновременно, то его полная кинетическая энергия равна

(3.23)

Из сопоставления формул кинетической энергии для поступательно­го и вращательного движений видно, что мерой инертности при враща­тельном движении служит момент инерции тела.

§ 3.6 Работа внешних сил при вращении твёрдого тела

При вращении твёрдого тела его потенциальная энергия не изменяется, поэтому элементарная работа внешних сил равна приращению кинетической энергии тела:

dA = dE или

Учитывая, что Jβ = M, ωdr = dφ, имеем α тела на конечный угол φ равна

(3.25)

При вращении твёрдого тела вокруг неподвижной оси работа внешних сил определяется действием момента этих сил относительно данной оси. Если момент сил относительно оси равен нулю, то эти силы работы не производят.

Примеры решения задач

Пример 2.1. Маховик массой m =5кг и радиусом r = 0,2 м вращается вокруг горизонтальной оси с частотой ν=720 мин -1 и при торможении останавливается за t =20 с. Найти тормозящий момент и число оборотов до остановки.

Для определения тормозящего момента применим основное уравнение динамики вращательного движения

где I=mr 2 – момент инерции диска; Δω =ω — ω, причём ω =0 конечная угловая скорость, ω=2πν — начальная. М –тормозящий момент сил, действующих на диск.

Зная все величины, можно определить тормозящий момент

(2)

Из кинематики вращательного движения угол поворота за время вращения диска до остановки может быть определён по формуле

(3)

где β–угловое ускорение.

По условию задачи: ω =ω – βΔt, так как ω=0, ω = βΔt

Тогда выражение (2) может быть записано в виде:

Пример 2.2. Два маховика в виде дисков одинаковых радиусов и масс были раскручены до скорости вращения n= 480 об/мин и предоставили самим себе. Под действием сил трения валов о подшипники первый остановился через t =80 с, а второй сделал N= 240 оборотов до остановки. У какого и маховика момент сил трения валов о подшипники был больше и во сколько раз.

Момент сил терния М1 первого маховика найдём, воспользовавшись основным уравнением динамики вращательного движения

где Δt – время действия момента сил трения, I=mr 2 — момент инерции маховика , ω1= 2πν и ω2= 0– начальная и конечная угловые скорости маховиков

Тогда

Момент сил трения М2 второго маховика выразим через связь между работой А сил трения и изменением его кинетической энергии ΔEк:

где Δφ = 2πN – угол поворота, N -число оборотов маховика.

Тогда , откуда

Отношение будет равно

Момент сил трения второго маховика в 1.33 раза больше.

Пример 2.3. Масса однородного сплошного диска m, массы грузов m1 и m2 (рис.15). Скольжения и трения нити в оси цилиндра нет. Найти ускорение грузов и отношение натяжений нити в процессе движения.

Проскальзывания нити нет, поэтому, когда m1 и m2 будут совершать поступательное движение, цилиндр будет совершать вращение относительно оси, проходящей через точку О. Положим для определённости, что m2 > m1 .

Тогда груз m2 опускается и цилиндр вращается по часовой стрелке. Запишем уравнения движения тел, входящих в систему

Читайте также:  Фотоаппарат с откидным экраном

Первые два уравнения записаны для тел с массами m1 и m2 , совершающих поступательное движение, а третье уравнение – для вращающегося цилиндра. В третьем уравнении слева стоит суммарный момент сил, действующих на цилиндр (момент силы T1 взят со знаком минус, так как сила T1 стремится повернуть цилиндр против часовой стрелки). Справа I — момент инерции цилиндра относительно оси О, который равен

где R — радиус цилиндра; β — угловое ускорение цилиндра.

Так как проскальзывания нити нет, то . С учётом выражений для I и β получим:

Складывая уравнения системы, приходим к уравнению

Отсюда находим ускорение a грузов

Далее легко найти T1 и T2 и их отношение

Из полученного уравнения видно, что натяжения нитей будут одинаковы, т.е. =1, если масса цилиндра будет гораздо меньше массы грузов.

Пример 2.4. Полый шар массой m = 0,5 кг имеет внешний радиус R = 0,08м и внутренний r = 0,06м. Шар вращается вокруг оси, проходящей через его центр. В определённый момент на шар начинает действовать сила, в результате чего угол поворота шара изменяется по закону . Определить момент приложенной силы.

Решаем задачу, используя основное уравнение динамики вращательного движения . Основная трудность – определить момент инерции полого шара, а угловое ускорение β находим как . Момент инерции I полого шара равен разности моментов инерции шара радиуса R и шара радиуса r:

где ρ — плотность материала шара. Находим плотность, зная массу полого шара

Отсюда определим плотность материала шара

Для момента силы M получаем следующее выражение:

Пример 2.5. Тонкий стержень массой 300г и длиной 50см вращается с угловой скоростью 10с -1 в горизонтальной плоскости вокруг вертикальной оси, проходящей через середину стержня. Найдите угловую скорость, если в процессе вращения в той же плоскости стержень переместится так, что ось вращения пройдёт через конец стержня.

Используем закон сохранения момента импульса

(1)

(Ji-момент инерции стержня относительно оси вращения).

Для изолированной системы тел векторная сумма моментов импульса остаётся постоянной. Вследствие того, что распределение массы стержня относительно оси вращения изменяется момент инерции стержня также изменяется в соответствии с (1):

Известно, что момент инерции стержня относительно оси, проходящей через центр масс и перпендикулярной стержню, равен

По теореме Штейнера

(J-момент инерции стержня относительно произвольной оси вращения; J – момент инерции относительно параллельной оси, проходящей через центр масс; а— расстояние от центра масс до выбранной оси вращения).

Найдём момент инерции относительно оси, проходящей через его конец и перпендикулярной стержню:

Подставим формулы (3) и (4) в (2):

Пример 2.6. Человек массой m=60кг, стоящий на краю платформы массой М=120кг, вращающейся по инерции вокруг неподвижной вертикальной оси с частотой ν1=12мин -1 , переходит к её центру. Считая платформу круглым однородным диском, а человека – точечной массой, определите, с какой частотой ν2 будет тогда вращаться платформа.

Решение: Согласно условию задачи, платформа с человеком вращается по инерции, т.е. результирующий момент всех сил, приложенных к вращающейся системе, равен нулю. Поэтому для системы «платформа-человек» выполняется закон сохранения момента импульса

где — момент инерции системы, когда человек стоит на краю платформы (учли, что момент инерции платформы, равен(R – радиус платформы), момент инерции человека на краю платформы равенmR 2 ).

— момент инерции системы, когда человек стоит в центре платформы (учли, что момент человека, стоящего в центре платформы, равен нулю). Угловая скорость ω1= 2π ν1 и ω1= 2π ν2.

Подставив записанные выражения в формулу (1), получаем

Чему равна кинетическая энергия

Вспомним как вычисляется кинетическая энергия. Если на тело массы m действует сила F, то его скорость v начнет изменяться. При перемещении тела на расстояние s, будет совершена работа A:

По второму закону Ньютона сила равна:

где a — ускорение.

Из известных формул, полученных в разделе механики, следует, что модуль смещения s при равноускоренном прямолинейном движении связан с модулями конечной v2, начальной v1 скоростей и ускорения a следующей формулой;

Читайте также:  Секреты ведьмак 2 убийцы королей расширенное издание

Тогда можно получить формулу для вычисления работы:

Величина, равная произведению массы тела m на квадрат его скорости, деленный пополам называется кинетической энергией тела Ek:

Из формул (4) и (5) следует, что работа A равна:

Таким образом, работа, совершенная силой, приложенной к телу оказалась равна изменению кинетической энергии тела. Значит любое физическое тело движущееся с ненулевой скоростью, обладает кинетической энергией. Следовательно, в состоянии покоя, при скорости v равной нулю и кинетическая энергия покоя будет также равна нулю.

Рис. 1. Примеры кинетической энергии:.

Неподвижное тело и температура

Любое физическое тело состоит из атомов и молекул, которые находятся в состоянии непрерывного хаотического движения при температуре T, не равной нулю. С помощью молекулярно-кинетической теории доказано, что средняя кинетическая энергии Ек хаотического движения молекул зависит только от температуры. Так для одноатомного газа эта связь выражается формулой:

где: k =1,38*10 -23 Дж/К — постоянная Больцмана.

Таким образом, когда тело как целое покоится, каждая молекулы и атомы, из которых оно состоит, тем не менее могут иметь ненулевую кинетическую энергию.

Рис. 2. Хаотическое движение молекул в газе, жидкости, твердом теле:.

Температура абсолютного нуля естественно равна 0 0 К или -273,15 0 С. Ученые, работающие в этой области, стремятся охладить вещество до этого значения температуры с целью получения новых знаний. Пока рекордно низкая температура, полученная в лабораторных условиях выше абсолютного нуля всего на 5,9*10 -12 К. Для достижения таких значений используются лазеры и магнитное охлаждение.

Энергия покоя

Формула (5) для кинетической энергии справедлива для скоростей много меньших скорости света с, которая равна 300000 км/с. Альберт Эйнштейн (1879-1955г.г.) создал специальную теорию относительности, в которой кинетическая энергия Ек частицы массой m, движущейся со скоростью v, есть:

При скорости v много меньше скорости света с (v

По Эйнштейну — сумма энергии покоя (9) и кинетической энергии (8) дает полную энергию частицы Eп :

Формула (10) показывает связь между массой тела его энергией. Оказывается, изменение массы тела приводит к изменению его энергии.

Что мы узнали?

Итак, мы узнали, что кинетическая энергия покоя обычного физического тела (или частицы) равна нулю, т.к. его скорость равна нулю. Кинетическая энергия частиц, из которых состоит покоящегося тело будет отлична от нуля, если его абсолютная температура не равна нулю. Отдельной формулы кинетической энергии покоя не существует. Для определения энергии покоящегося тела допустимо использование выражений (7) – (9), имея в виду, что это внутренняя энергия частиц, составляющих тело.

Кинетическая энергия твёрдого тела, вращающегося вокруг неподвижной оси

В твёрдом теле, вращающемся с угловой скоростью относительно неподвижной осиz, выделим элемент массойmi. Эта частица будет двигаться по окружности радиусаriс линейной скоростьюVi=ri(рис. 10.3).

Кинетическая энергия этой частицы равна:

.

Кинетическую энергию тела можно получить, сложив энергии всех его частиц:

.

Здесь =Iz— момент инерции тела относительно осиz, поэтому выражение кинетической энергии вращающегося тела окончательно представим так:

. (10.6)

Этот результат напоминает формулу кинетической энергии поступательно движущегося тела:

. (10.7)

Различие только в том, что в одном случае при расчёте энергии используется масса тела и линейная скорость, в другом — момент инерции и угловая скорость вращения.

Кинетическая энергия тела при плоском движении

Любое движение твёрдого тела может быть представлено суперпозицией двух движений — поступательного и вращательного.

Представим плоское движение тела суммой поступательного со скоростью , равной скорости центра масс, и вращения с угловой скоростьювокруг оси, проведённой через центр масс тела — точку С.

Скорость i-той частицы тела (mi) будет равна векторной сумме её скоростей в этих двух движениях:

.

Здесь — радиус-вектор частицы, определяющий её положение относительно точки центра масс — С (рис. 10.4).

Вычислим кинетическую энергию i-той частицы:

Читайте также:  Телефон с хорошим gps приемником

.

Заметим (см. рис. 10.4), что модуль векторного произведения равен:

,

где Ri— радиус круговой траектории частицыmi, или, что то же самое, — её расстояние от оси вращения.

Теперь раскроем скобки, попутно сделав циклическую перестановку сомножителей во втором слагаемом:

.

Кинетическая энергия тела равна сумме энергий всех её частиц, поэтому:

.

Анализируя этот результат, приходим к следующим выводам:

Сумма =Мравна массе тела.

Сумма равна произведению массы тела на радиус-вектор точки центра масс. Но так как в этой задаче все радиус-векторы откладываются от точки центра масс, то= 0, и== 0.

Сумма =ICпредставляет собой момент инерции тела относительно оси вращения, проходящей через центр масс (точку С).

Таким образом, кинетическая энергия тела равна:

. (10.8)

Представив движение суммой поступательного и вращательного движений, мы пришли к выводу, что кинетическая энергия плоского движения равна сумме энергий поступательного движения со скоростью, равной скорости центра масс VС и вращения относительно оси, проходящей через центр масс тела:

.

Скатывание тел с наклонной плоскости

С тем, чтобы проиллюстрировать применение законов динамики твёрдого тела, решим задачу о скатывании цилиндра с наклонной плоскости (рис. 10.5).

Сплошной цилиндр массы mи радиусаRскатывается без проскальзывания с наклонной плоскости. Угол наклона плоскости —, а высотаН(Н»R). Начальная скорость цилиндра равна нулю. Определим время скатывания —Ти скорость центра масс цилиндра у основания наклонной плоскости.

При качении цилиндра на него действуют три силы: сила тяжести , упругая сила реакции опорыи сила тренияпокоя(ведь качение без проскальзывания!).

Представим это движение суммой двух движений: поступательного со скоростью VC, с которой движется ось цилиндра, и вращательного вокруг оси цилиндра с угловой скоростью.

. (10.9)

Эта связь скоростей поступательного и вращательного движений следует из условия «движение без проскальзывания».

Продифференцировав уравнение (10.9) по времени, получим соотношение углового и линейного ускорений цилиндра:

, то есть.

Воспользовавшись теоремой о движении точки центра масс, опишем поступательное движение цилиндра:

. (10.10)

Для описания вращения воспользуемся основным уравнением динамики вращательного движения:

Спроецировав уравнение (10.10) на направления осей xиy, получим два скалярных уравнения:

Обратимся теперь к уравнению (10.11). Из трёх названных сил момент относительно оси цилиндра создаёт только сила трения:

.

Момент инерции сплошного цилиндра относительно его оси равен (см. лекцию №9):

.

Учитывая всё это, уравнение (10.11) перепишем так:

. (10.14)

Решая совместно уравнения (10.12) и (10.14), получим следующие значения неизвестных величин:

; (10.15)

. (10.16)

Из уравнения (10.15) следует, что с увеличением угла наклона должна возрастать и сила трения покояFтр. Но, как известно, её рост ограничен предельным значением:

. (10.17)

Так как сила трения покоя (10.15) не может превышать предельного значения (10.17), то должно выполняться неравенство:

Отсюда следует, что скатывание будет происходить без проскальзывания до тех пор, пока угол не превзойдёт значенияпред:

Здесь — коэффициент трения цилиндра по плоскости.

Линейное ускорение цилиндра (10.16) величина неизменная, следовательно, поступательное движение цилиндра равноускоренное. При таком движении без начальной скорости цилиндр достигнет основания наклонной плоскости за время:

.

Здесь: l=— длина плоскости;

a=, (см.10.16).

Значит, время скатывания:

. (10.18)

Вычислим конечную скорость поступательного движения оси цилиндра:

. (10.19)

Заметим, что эту задачу можно решить проще, воспользовавшись законом сохранения механической энергии.

В системе, правда, присутствует сила трения, но её работа равна нулю, поскольку точка приложения этой силы в процессе спуска остаётся неподвижной: ведь движение происходит без проскальзывания. Раз нет работы силы трения, механическая энергия системы не меняется.

Рассмотрим энергию цилиндра в начальный момент — на высоте hи в конце спуска. Полная энергия цилиндра в этих положениях одинакова:

.

Вспомним, что и. Тогда уравнение закона сохранения энергии можно переписать так:

.

Отсюда легко найдём конечную скорость цилиндра:

,

которая блестяще подтверждает полученный нами ранее результат (10.19).

Ссылка на основную публикацию
Хрипит динамик в машине причины
Атмосфера в салоне автомобиля во многом зависит от работы акустической системы. В бюджетных машинах штатная магнитола и динамики оставляют желать...
Фиксированная шапка сайта при прокрутке
Допустим у вас важная информация например контакты находятся в шапке и вы хотите что бы они всегда были на веду...
Фиксированное меню при скролле
Создаём эффект залипания при прокручивании страницы на блоках меню навигации, бокового виджета и меню с помощью jQuery и без него....
Хром видео не на весь экран
БлогNot. Chrome 33 перестал показывать YouTube в полный экран. Chrome 33 перестал показывать YouTube в полный экран. Видел такой запрос....
Adblock detector